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Abstract: More electrical vehicles adopt dissimilar redundant control systems with dissimilar power
supplies and dissimilar actuators to achieve high reliability and safety, but this introduces more
intricacy into the configuration design. Currently, it is difficult to identify the optimum configuration
via the conventional trial-and-error approach within an acceptable timeframe. Hence, it is imperative
to discover novel methods for the configuration design of more electrical vehicles. This paper
introduced the design specification of more electric vehicles and investigated the contribution of
different kinds of actuators, presenting a new multi-objective configuration optimization approach
on the foundation of system reliability, weight, power, and cost. By adopting the non-dominated
sorting genetic algorithm-II (NSGA-II), the Pareto optimization design set was obtained. Then,
the analytic hierarchy process (AHP) was introduced to make a comprehensive decision on the
schemes in the Pareto set and determine the optimal system configuration. Eventually, numerical
results indicated that the reliability of our designed configuration increased by 5.89% and 55.34%,
respectively, compared with dual redundancies and single redundancy configurations, which verified
the effectiveness and practicability of the proposed method.

Keywords: more electric vehicles; dissimilar redundant actuation system; NSGA-II algorithm;
optimization design

1. Introduction

Safety critical systems in aircraft [1], carrier rockets [2], ships [3] and large machines [4]
usually adopt redundant actuation systems to guarantee high reliability and safety [5].
In such designs, the rest systems can complete the work when one or more actuators
fail. To reduce the number of common-cause faults and common-mode faults, dissimilar
redundancy systems are adopted consequentially [6], in which different actuators with the
same performances are used. With the rapid development of more electrical technologies,
and more electric vehicles based on different power supply systems, actuation systems and
computers have become increasingly common. In terms of actuation systems, hydraulic
actuators (HAs), electro-hydrostatic actuators (EHAs) and electromechanical actuators
(EMAs) [7] are leveraged in more electric vehicles. For instance, more electrical aircrafts
are adopting heterogeneous actuation systems to move control surfaces based on HAs and
EHAs [8]. Since HAs utilize hydraulic power supply systems while EHAs and EMAs adopt
electrical power supply systems, the configuration design of more electric vehicles (MEVs)
faces substantial challenges. The first one is how to design more electric control systems
to maintain high mission reliability without permissive cost and weight. The second
one is how to strike a balance between power supply systems and actuator distribution.
The last one is how to determine the types of actuators for more electric control systems,
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which include HAs, EHAs, and EMAs. Given the aforementioned factors, the design of
safety-critical system configurations becomes a daunting task. Therefore, an appropriate
and effective approach should be adopted to solve the combination-explosion problem of
system configurations, thus achieving the optimization design of a more electric control
system (MECS) [9,10].

The optimization design of an electric control system needs to realize multi-objective
optimization and comprehensively consider various contradictory indicators. Traditional
methods include the weighting method [11,12], the constraint method [13,14], and goal
programming [15–17]. However, these methods require the designer to master correspond-
ing background knowledge to determine weights, energy dissipation, and other indicators,
and the explosive configuration is another challenge that arises from those methods. In
addition, the program needs to be run independently many times, which may lead to
inconsistent results each time and render it more difficult for designers to make eventual de-
cisions. In recent decades, various multi-objective intelligent optimization algorithms have
emerged and vigorously developed, for example, the genetic algorithm (GA) [18], differen-
tial evolution algorithm (DE) [19], particle swarm optimization algorithm (PSO) [20,21],
and non-dominated sorting genetic algorithm (NSGA) [22]. Among them, NSGA is famous
for its good performance due to the adoption of non-dominated sorting and fitness-sharing
strategy. The former increases the possibility of superior characteristics inherited by the
next generation, while the latter sustains population diversity, overcoming the overmuch
reproduction of super individuals and preventing prematurity convergence [23]. Neverthe-
less, there are also disadvantages such as high computational complexity in NSGA. Thus,
in 2002, Deb et al. proposed NSGA-II [24]. In contrast to NSGA, the rapid non-dominated
sorting method, elitism preservation strategy and congestion comparison were introduced
in NSGA-II, which greatly reduced the computational complexity of the algorithm. More-
over, NSGA-II also expanded the distribution space of the solution set in the Pareto frontier,
thus maintaining population diversity [25]. At present, NSGA-II has been widely applied
to tackle multi-objective optimization problems in various fields. Xia et al. [26] investigated
the multi-objective optimization problem for AUV conceptual design, where NSGA-II was
applied to find the optimal Pareto frontier, with a comprehensive consideration of cost, ef-
fectiveness, and risks. The result verified the effectiveness of the algorithm. Alam et al. [27]
studied the problem of AUV design and construction and employed NSGA-II to determine
the optimum design of a torpedo-like AUV with a total length of 1.3 m. In addition, a
kind of heavier-than-water underwater vehicle (HUV) was regarded as a research object
by Liu et al. [28], and NSGA-II was adopted to establish a global approximation model,
thus assisting the eventual optimal design of HUV. Nevertheless, these methods ignored
the optimization designs of the global architectures of dissimilar control systems. As men-
tioned above, the optimization design of MECS is to solve the multi-objective optimization
issue, where some contradictory indicators require all-round considerations. Therefore, the
NSGA-II, combined with the AHP [29–32] method, was adopted in this paper to solve this
problem, in which the binary encoding mode was employed and the decision variables
were confined in discrete space. Moreover, the mutation process was modified to better
match the characteristics of the problem. Eventually, the case study verified the validity of
our approach.

The other sections of the paper are arranged as follows: Section 2 demonstrates the
system descriptions. Section 3 presents the optimization approach on the foundation of
NSGA-II and AHP method. Section 4 displays the case study, while the conclusions are
presented in Section 5.
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2. Mathematical Modeling of More Electric Control System (MECS)

According to the design specification of safety critical systems, more electric control
systems require high reliability and safety. For example, the possibility of mission failure
per flight owing to certain material damages in the flight control system should not surpass
the upper limit. Normally, the failure rate of a flight control system is 10−9/h to 10−10/h
for a commercial aircraft. Hence, it is necessary to utilize a dissimilar flight control system
to maintain high reliability.

2.1. Single Control System Structure

A schematic diagram of the basic structure of a more electric control system, in which
the controller, actuator, and sensor are main components, is illustrated in Figure 1. Since
the electric power supply and hydraulic power supply are provided simultaneously, the
actuator can be selected from HAs, EHAs, or EMAs, as shown in Figure 1. A HA is powered
by a hydraulic supply system while an EHA or EMA is powered by an electric supply
system. Since a centralized hydraulic power supply system has the characteristics of high-
power density and fast response, HAs are widely used in control systems. However, the
control system is heavy and easily exposed to oil contamination when HAs are adopted
as they need pipeline transmission from the centralized power supply to the actuator. An
EHA consists of the motor, pump, and cylinder that replaces the pipeline transmission by
wire transmission. Hence, the weight of an EHA is light, whereas its heat dissipation is poor.
An EMA consists of the motor and the ball screws. The command is transmitted from the
wire controlling the motor and ball screws to drive the load. Therefore, an EMA is simple
and light weight, but it gets stuck easy. Hence, to determine which type of actuator should
be used, one has to comprehensively consider the weight, performance, and reliability.

Figure 1. Structure of typical actuation system.

2.2. Redundant Configuration of Actuation System

The more electric control of safety critical systems not only requires the high-precision
performance but also requires extremely high reliability and safety. Thus, redundant
designs are often adopted, such as dual-redundant actuators and triple-redundant actuators.
In order to integrate the advantages of hydraulic power and electric power, the typical
isomorphic actuation system and heterogeneous actuation system shown in Figures 2–4
are used in real-world applications. In an aircraft, the HA/HA, HA/EHA, and HA/EMA
are classic dual-redundant actuation systems, as shown in Figures 2–4.
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Figure 2. Configuration of actuation system with two HAs.

Figure 3. Configuration of actuation system with one HA and one EMA.

Figure 4. Configuration of actuation system with one HA and one EHA.

Generally, the regulation of a dissimilar redundant actuator is to design the different
actuator powered by a different power supply for one surface. In such design, when any
actuator or power supply system fails, the other can fulfill the task through fault switching.
Table 1 presents the typical configuration of a dissimilar redundant actuation system.
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Table 1. Typical configuration of dissimilar redundant actuation system.

Redundancy Actuator Type Power Supply

Dual redundancies
HA, HA Hydraulic power

HA, EMA Hydraulic and electric power
HA, EHA Hydraulic and electric power

Triple redundancies HA, EHA, and EMA Hydraulic and electric power

Remark 1. Triple redundancy was considered in this research because when the number of redun-
dancies increases, the performance indicators of an MECS will increase accordingly, which is not
beneficial for system operation. Besides, an actuation system with more than three redundancies is
rarely used in practice.

2.3. Redundant Configuration of More Electric Control System

As mentioned above, dissimilar redundancy technology is widely used in safety
critical system design in order to improve system reliability. In a commercial aircraft,
various controllers, actuators, and power supplies are applied in the aircraft actuation
system. A typical redundant actuation system configuration based on high reliability
for a commercial aircraft is illustrated in Figure 5. Although multiple control computers,
actuators, and power supply systems can achieve high reliability, weights and costs will
increase correspondingly, with maintainability decreased as well. Therefore, it is imperative
to optimize the quantity of redundant control computers, power supply systems, and
actuators. At same time, designers have to solve the common faults of dissimilar power
supplies and dissimilar actuators as shown in Figures 2–4.

Figure 5. Configuration of commercial aircraft redundant actuation system.
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In Figure 5, I expresses the information nodes of the control computer; P describes the
power supply nodes; A is the actuator nodes; and S shows the surface of the aircraft. Herein,
the actuator includes an HA, EHA, and EMA, as shown in Figures 2–4. Both the fonts of
actuation nodes and rudder surfaces are bold since they are our main considerations.

Definition 1. Power supply module set is P = {Pi}(i = 1, 2, . . . , n). For aircraft shown in
Figure 5, P1 = H means the power supply; P1 is the hydraulic power; and P2 = E means that the
power supply P2 is electric power.

Definition 2. Actuator module set is A =
{

Aj
}
(j = 1, 2, . . . , m). For aircraft shown in Figure 5,

A1 = HA means that the actuator A1 is a hydraulic actuator. A2 = EHA means that the
actuator A2 is an electro-hydrostatic actuator, and A3 = EMA means that the actuatorA3 is a
mechatronic actuator.

Remark 2. Here, the commercial aircraft redundant actuation system is introduced as a typical
MESC merely. In fact, our method is extensible and can be applied to more kinds of systems. In
Section 4, we abstract a typical MECS with 3 hydraulic power supplies and 2 electric power supplies
as the research object, which can be also extended to more combinations.

3. Multi-Objective Optimization of MECS Based on NSGA-II and AHP

Though an MECS can improve system reliability and ensure safety, when the system
structure is more sophisticated, the corresponding structural indicators such as weight
and cost will increase enormously. The design of an MECS may also increase the system
volume and faults derived from the heavy weight. Therefore, we need to optimize factors
such as the weight, power dissipation, and reliability of an MECS to ensure a compromise
between these indicators.

3.1. Multi-Objective Optimization Modeling of MECS

The primary task for optimization design is to transfer the optimization problem into
mathematical descriptions. Generally, an optimization problem is composed of three ele-
ments: objective functions, decision variables, and constraint conditions. The optimization
problem of an MECS can be expressed as

J = maxRs(t)
Rs(t) = f (Hi, Ei, HAj, EHAj, EMAj)

s.t.0 ≤ m(Hi, Ei, HAj, EHAj, EMAj) ≤ M
0 ≤ ψ(Hi, Ei, HAj, EHAj, EMAj) ≤ Ψ
0 ≤ c(Hi, Ei, HAj, EHAj, EMAj) ≤ C

...
0 ≤ g(Hi, Ei, HAj, EHAj, EMAj) ≤ G

i ∈= L = {1, . . . , m} ⊂ N
j ∈= F = {1, . . . , n} ⊂ N

(1)

where function J is the maximum reliability; m(Hi, Ei, HAj, EHAj, EMAj) is the actual
evaluation mass of the MECS; M is the superior limit of mass; ψ(Hi, Ei, HAj, EHAj, EMAj)
expresses the actual evaluation power dissipation of the MECS; Ψ is the superior limit
of power dissipation; c(Hi, Ei, HAj, EHAj, EMAj) describes the actual evaluation cost of
the MECS; c represents the superior limit of cost; g(Hi, Ei, HAj, EHAj, EMAj) represents
the other actual evaluation indicators of MECS; and G represents the superior limit of
other indicators. The specific evaluation methods of objective functions and constraints are
given below.
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3.1.1. Objective Function

According to Equation (1), reliability is the most essential indicator and the objective
function. System reliability refers to the ability of the system to meet the specified functions
within the specified time and under the specified conditions. Only when specific functions
of an MECS are controlled effectively at the same time can the overall function of the system
be guaranteed. Therefore, the overall functional reliability of an MECS is defined as the
ability to effectively control the specific functions simultaneously within the specified time
and under the specified conditions.

Based on the definition above and by considering an MECS with eight actuation
functions, the functional reliability of an MECS can be expressed as

RS = Pr{F1 ∩ F2 ∩ · · · ∩ F8} = Pr{S} (2)

where F1, . . . , F8 represent the pivotal functions that MECS should accomplish.
By considering the multiple control surface combinations involved in the realization

of system functions, Equation (2) can be rewritten as

RS = Pr
{(

p
∪

x=1
F1

)
∩
(

q
∪

y=1
F2

)
· · · ∩

(
m
∪

z=1
F8

)}
(3)

where
(

p
∪

x=1
F1

)
∩
(

q
∪

y=1
F2

)
· · · ∩

(
m
∪

z=1
F8

)
represents a certain combination that realizes the

pivotal functions.
To simplify the calculation, the program first calculated the overall reliability of electric

power supplies E1, E2 and then calculated the overall reliability of hydraulic power supplies
H1, H2. Next, we calculated the minimum path and the program performing disjoint
operation. Through decoupling analysis, nine minimal paths were obtained. Consequently,
the functional reliability of an MECS can be calculated by

RS = Pr
{

9
∪

i=1
Si

}
= qE1qE2qE5qE6 pEB pED pEH pEJ pEN pEO pEP pEQ pER pES pET pEU

pEV pEW pEX pH1 pH3 pP1 pP2 pK1 pK2 pDD pYY pC1 pC2 pC3 + qE1 pE2qE5qE6 pEB pED pEH
pEJ pEN pEO pEP pEQ pER pES pET pEU pEV pEW pEX pH3 pP1 pP2 pK1 pK2 pDD pYY pC1 pC2
pC3 + · · ·+ qE1 pE2 pE5 pEB pED pEH pEJ pEN pEO pEP pEQ pER pES pET pEU pEV pEW pEX
pH1 pH3 pP1 pP2 pK1 pK2 pDD pC1 pC2 pC3 + pE1 pE5 pEB pED pEH pEJ pEN pEO pEP pEQ pER
pES pET pEU pEV pEW pEX pH1 pH3 pP1 pP2 pK1 pK2 pDD pC1 pC2 pC3

(4)

Remark 3. Equation (4) gives the relationship between system reliability and component system.
In fact, system reliability is determined by each component reliability, that is, the actuator reliability,
while actuator reliability is associated with weight, power consumption, and cost. These indicators
will eventually have an influence on system reliability.

3.1.2. Constraint Conditions

The aim of optimization design is to identify the optimal solution from the practical
solutions. The optimal solution can meet the goal of design as far as possible. The elevation
of weight will restrict the MECS installation power; hence, weight is a vital index for system
property. Power dissipation is another vital property index. In the optimization design of
an MECS, particularly for a highly-efficient MECS, how to decrease the power dissipation
with the existent technology and apparatus is a challenge which need to be tackled by
designers. Meanwhile, as an MECS has to harbor high performance and reliability, so
the reliability of an MECS should be considered. For practical application, the cost is an
indispensable indicator that must be evaluated. Eventually, weight, power dissipation, cost,
and reliability are determined as constraint conditions.
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• Weight

Weight is a vital evaluation index and decisive factor of an MECS. When we evaluate
weight, the difficulties usually include various components, many of which exhibit a
nonlinear growth relationship with design requirements, and serious coupling with other
systems with different types of actuators. For an EHA, since it consists of the integration
block, cylinder, pump, and motor, its weight evaluation can be presented as

MEHA = Mblock + Mcylinder + Mpump + Mmotor (5)

where Mblock, Mcylinder, Mpump refer to the weight of the integration block, cylinder, and
pump, respectively. Mmotor denotes the weight of the brushless direct-current motor (BLDC).
All of them have the same unit, kilograms.

A permanent magnet brushless direct-current motor (BLDC) is utilized in the EHA
due to its satisfactory control property and great power-to-mass ratio. The weight forecast
of the BLDC is expressed by

Mmotor = 0.628T3/3.5 + 0.783 (6)

in which T represents the torque of BLDC.
The pump weight is proportionate to pump output. Thus, Mpump can be expressed

as [33]
Mpump = 0.339D + 2.038 (7)

The integration block is the EHA frame and involves the indispensable parts such as
the nonreturn valve, filter, and accumulator. The overall weight is speculated by the EHA
power, which is expressed as [33]

Mblock = 0.105PEHA + 2 (8)

where PEHA denotes the maximal power of EHA.
The fluid cylinder weight includes the four parts stated below:

Mcylinder = Mcover + Mshell + Mpiston + Mrod (9)

where Mcover, Mshell , Mpiston, Mrod are the weights of the cylinder cover, shell, piston, and
plunger rod, respectively. All of them can be calculated by

Mrod = π
4 × d2

rod × Lrod × ρsteel
Mpiston = A× tpiston × ρcopper

Mshell = π
4 ×

(
d2

shell −
4A
π

)
× Lshell × ρsteel

Mcover = 2× π
4 × d2

shell × tcover × ρsteel

(10)

Thus, the total weight can be evaluated as

M =
nHA

∑
i=1

MHA+
nEHA

∑
i=1

MEHA+
nEMA

∑
i=1

MEMA+Melec + Mpipe + Mwire (11)

where MHA, MEHA, MEMA represent the weights of HA, EHA, and EMA, respectively, and
Melec, Mpipe, Mwire represent the weights of electric equipment, pipe and wire, respectively.

• Power efficiency

For an EHA, the motor converts electric energy to hydraulic power, pushing the
cylinder to realize the movement of the control surface. For an EHA system, when its
control surface load is certain, it saves more energy, resulting in lower power dissipation.
The control surface torque TS, control surface velocity ωS, and pressure PS are known
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design specifications. The aim of decreasing the power dissipation of an EHA is to decrease
the power output of the motor P, which is written as

P = T ×W (12)

The motor is directly connected to the pump, so the torque and speed of the motor
and pump are the same. The torque of the pump is expressed as

T = Jpm ×
dω

dt
+ K f ric ×ω + (p f + 2ppipe)×

D
2π

(13)

where Jpm is the pump rotational inertia; K f ric denotes the viscosity factor, Jpm× dω/dt = 0;
the pump rotation velocity is constant; p f denotes the differential pressure between the
2 cylinder cavities; and ppipe denotes the pressure consumption within the pipe. Hence,
Equation (13) is written as

T = K f ric ×ω + (p f + 2ppipe)×
D
2π

(14)

in which p f = F/A, F is the loading force of an EHA and A denotes the piston effective
area, which can be calculated by

A =
kF
PS

(15)

in which k > 1 denotes a logical excess margin, and F can be described by

F =
TS × sin(θ + 30

◦
)

L
(16)

For an EMA, the power dissipation is determined by the ball screw. Therefore,
Equation (17) gives the calculation method for the drive torque of the ball screw:

Ta =
Fa × I

2π × n1
(17)

where Ta represents the drive torque; I is the lead screw; n1 is the positive efficiency of the
feed screw; and Fa refers to the axial load, which can be expressed by

Fa = F + µmg (18)

where F means the axial cutting force of the lead screw, µ is the comprehensive friction
coefficient, and m refers the weight of the worktable and workpiece.

After the calculation of the drive torque Ta, the motor power can be determined
accordingly; thus, the corresponding power dissipation of the motor can be obtained.

For the power dissipation evaluation of a HA, the volumetric efficiency of the pump
η0 is the main affecting factor, which can be described by

η0 =
Q
Q0
× 100% (19)

where Q0 means the theoretical flow of the pump, and Q is the actual pump flow, which is
written as

Q = Qpump + Qpipe + Qcylinder (20)

where Qpump denotes the pump leak, Qpipe denotes the loss of flow within the hydraulic
tube, and Qcylinder denotes the cylinder flow.

Qpump = ξ × (p1 − p2) = ξ × F/A
Qcylinder = A× v
Qpipe = 2× ξ × ppipe

(21)
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where ξ is the pump leakance coefficient, ppipe denotes the pipe pressure drop, and v
denotes the cylinder speed.

• Cost

For an MECS, cost is another index worthy of consideration. In this paper, the total
costs are divided into two parts:

C = Cmanu + Coper (22)

where C represents the total cost of an MECS, Cmanu refers to the manufacturing cost, and
Coper represents the operation cost.

However, when we evaluated the total cost, the component cost exhibited a nonlinear
growth relationship with the requirement. To simplify this process, this paper utilized differ-
ent configurations to obtain the costs of all components. In the evaluation of manufacturing
costs, the main components considered included the HA, EHA, EMA, oil boxes, pipelines,
cables, engine-driven pump (EDP), and electric motor driven pump (EMP). The evaluation
was conducted mainly based on the similarity principle. Thus, the manufacturing costs is
expressed as

Cmanu =

nedp

∑
i=1

Cedp +
nemp

∑
i=1

Cemp +
ntank

∑
i=1

Ctank +
nmotor

∑
i=1

Cmotor +
nact

∑
i=1

Cact +

npipe

∑
i=1

Cpipe +
nwire

∑
i=1

Cwire (23)

where Cedp represents the cost of the EDP; Cemp refers to the cost of the EMP; Ctank is the
cost of the tank; Cmotor is the cost of the motor; Cact describes the cost of the actuator; Cpipe
expresses the cost of the pipe; and Cwire denotes the wire cost.

The operation expense primarily denotes the Direct Operating Costs (DOCs), which
are changeable costs directly derived from operating the aircraft [34]. The fuel expense and
maintenance expenditure of DOCs are changeable. Hence, the DOCs are predominantly
related to fuel expense and maintenance expenditure herein. The operation expense
speculation is written as

Coper = Coil + Cmain (24)

where Coil and Cmain represent the fuel cost and maintenance cost, respectively.
Based on the statistical proportion of main flight control maintenance cost in the

total maintenance expenditure, the fuel expense speculation primarily considers the fuel
consumption during the life of the commercial aircraft. The function of fuel cost with
respect to time is expressed as

Coil(t) = 50× C0 ×Weight× (1.02t − 1) (25)

where C0 means the average annual fuel cost of the aircraft and Weight represents the
fuel weight.

The maintenance cost of the aircraft in the whole life cycle mainly has two parts [35].
One is called the cyclic cost CC, which is related to the take-off and landing of the aircraft,
such as the maintenance of its braking device, flap system, and landing gear. The other cost
is related to the flight time of the aircraft, such as the regular loss and replacement of parts
caused by each hour of flight. This part of the cost is called hourly cost CH . The evaluation
of the maintenance cost is usually accomplished through the statistic of man-hour cost.
Equation (26) provides the method for man-hour cost calculation

Cmain = CH × t + CC × t + M× (1/α)× R× t (26)

3.1.3. Design Variables

The expression of a goal suggests that there are substantial that which ought to be
identified in configuration designs. Nevertheless, considering all those variables during
optimization makes convergence difficult and is quite time-consuming. Hence, merely vital
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variables having a remarkable influence on MECS property ought to be optimized. Overall,
the selective principles of the design variates are stated below:

1. The quantity of design variates ought to be decreased to the utmost extent. Overall, the
quantity of design variates in mechanical optimization design should not surpass 5.

2. The variables ought to exert a remarkable impact on the goal function. Indexes
affecting the constraint and property directly ought to be chosen as design variates.

3. The chosen variates ought to be independent.
4. The variates ought to be chosen as per the optimization goal.

According to the aforesaid principles, the optimization variates are chosen via:

x =


x1
x2
x3

 =


nHA
nEHA
nEMA

 (27)

3.2. Multi-Objective Optimization Based on NSGA-II

The optimization issue herein aimed at the configuration design of an MECS. NSGA-II
is proper for optimizing multi-objective issues as it exhibits strong distributed capability
and rapid convergence. The flow chart of NSGA-II is shown in Figure 6. Subsequently, the
encoding/decoding mode and fast non-dominated sorting process are elaborated.

Figure 6. Flow chart of NSGA-II.

3.2.1. Encoding and Decoding

In our research, the binary encoding mode was adopted in NSGA-II, which was simple,
efficient, and easy to design and use for implementing crossover and mutation operations.
Two types of energy information were encoded through this mode, while the configuration
of each actuation system was also expressed in binary. Figure 7 illustrates this coding mode.
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Figure 7. Binary encoding mode adopted in NSGA-I.

3.2.2. Fast Non-Dominated Sorting

Compared with non-dominated sorting approach utilized in NSGA arithmetic, the
rapid non-dominated sorting utilized in NSGA-II algorithm requires lower computational
complexity, which is only about O(MN2). The overall algorithm flow was presented
as follow:

Algorithm 1: Fast non-dominated sorting

1: Fast-non-dominated-sort (P)
2: for each p ∈ P
3: for each q ∈ P
4: if p ≤n q, then # if p is dominated by q, then add q to Sp
5: Sp = Sp ∪ q
6: else if q ≤n p, then
7: np = np + 1
8: if np = 0, then
9: prank = 1, F1 = F1 ∪ P # when np of the individual is 0, then this individual is the first level of Pareto
10: The comparison of dominating relationships between individuals, Sp and np, are introduced for storage and records,
respectively; ≤n represents the comparison of dominating relationships. The solution of np = 0 is stored in the records of level 1,
and the solution of level 1 has higher priority than that of level 2.
11: i = 1.
12: while Fi = ∅ do
13: H=∅
14: for each p ∈ Fi
15: for each q ∈ Sp # Sort all the individuals in Sp
16: nq = nq − 1
17: if nq = 0, then # when nq of the individual is 0, it is a non-dominated individual
18: qrank = i + 2, H = H ∪ q # The Pareto level of this individual is the current highest level plus 1. At this
moment, the initial value of i was 0, so we added 2.
19: end while
20: i = i + 1, Fi = H
21: Loop the program to obtain level 2, level 3 . . . The computational complexity is O(MN2)

3.2.3. Crowding Degree Calculation

Crowing degree Id refers to the local crowding distance between any two adjacent
points whose level are the same in the target space. The purpose of introducing crowding
degree is to improve the distribution uniformity of the Pareto solution set. Furthermore,
it could not only boost the diversity of population but also enhance system robustness.
The crowding degree Id could be expressed as the length of the maximum rectangle of
individual i on both sides, where the rectangle only includes i itself.

The main procedure to determine the degree of individual congestion involves three steps:

• Define the crowding degree of every individual in population i as Id = 0;
• Define the crowding degree 0d and id of boundary individuals as ∞ according to each

evaluation indicator;
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• Define the crowding degree of marginal individuals as a larger number L(1)d = L(l)d = M
to prioritize individuals on the sorting edge; thus, the crowding degree of any other
individual Id can be expressed as

Id =
m

∑
j=1

(∣∣∣ f i+1
j − f i−1

j

∣∣∣) (28)

where j refers to each evaluation indicator; f i+1
j represents the jth evaluation indicator value

of individual i + 1; and f i+1
j represents the jth evaluation indicator value of individual

i− 1.
Through the aforesaid steps and calculation, every individual was endowed with

two attributes, i.e., the crowding distance and the rank. This laid the foundation for the
follow-up processes.

3.2.4. Optimal Selection

The optimal selection avoids the loss of effective factors and ensures the survival
rate of high-performance individuals, so it can ensure that the Pareto optimal solution is
continuously optimized. The optimal selection can not only improve the efficiency and
convergence of the optimization but also ensure the uniformity of the optimization process.
The selection process is completed by comparing the results of fast non-dominated sorting
and crowding calculation, and better individuals are selected after comparison. Two steps
are involved during this process.

• The first step is the rank comparison. Select two individuals a and b randomly and
make comparison between Arank (the non-dominated rank of individual a) and Brank
(the non-dominated rank of individual b). When Arank < Brank, a is better than
b and vice versa. Moreover, the crowding degree requires to be compared when
Arank = Brank;

• The second step is the crowding degree comparison. When condition Ad > Bd is
satisfied, it indicates that individual a is better; otherwise, individual b is better. Then,
the better individual is selected to continue the following optimal processes.

3.2.5. Crossover

The main function of crossover is to simulate gene recombination in the process of
heredity and evolution. There are various approaches to implement it, such as uniform
crossover, multi-point crossover, and binary crossover. In our research, the simulated
binary crossover is adopted for crossover operation, which is expressed as

y1j = 0.5×
[(

1 + γj
)

x1j +
(
1− γj

)
x2j
]

y2j = 0.5×
[(

1− γj
)

x1j +
(
1 + γj

)
x2j
]

(
2uj
) 1

η+1 i f uj ≤ 0.5(
1

2(1−uj)

) 1
η+1

else

(29)

where uj ∈ (0, 1); x1j and x2j are parent individuals; y1j and y2j are offspring individuals;
and η > 0 refers to the cross-distribution index. Generally, η = 20 is the best value of the
cross-distribution index by default.

3.2.6. Mutation

Mutation is widely applied to simulate variation links in the process of biological
heredity and evolution, which refers to the replacement between genes, that is, substitute
the other gene values with the alleles on the locus to create new individuals. Through
mutation, not only could the local searchability be improved but also the population
diversity is guaranteed.
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This paper introduced the polynomial mutation method into the research on multi-
objective optimization problems. The form of mutation operator is expressed as

V′k = Vk + δ(uk − Lk)

δ =


[
2u + (1− 2u)(1 | −δ1)

ηm+1
] 1

ηm+1 − 1 i f u ≤ 0.5

1−
[
2(1− u) + 2(u− 0.5)(1− δ2)

ηm+1
] 1

ηm+1 else i f u > 0.5

(30)

where δ1 = (Vk−Lk)
(uk−Lk)

, δ2 = (uk−Vk)
(uk−Lk)

, u denotes a stochastic number in interval [0,1], ηm

denotes the distribution index, and Vk is a parent individual.

3.3. Comprehensive Evaluation of System Configuration Based on AHP

The analytic hierarchy process (AHP) is a multi-objective decision analysis approach
that combines qualitation and quantitation analyses, where elements associated with task
decisions are divided into the object level, criterion level and scheme level. The AHP
mathematizes the decision-making via a few quantitation data based on deep analyses,
such as the influential factors and inner association of the decision-making problems. AHP
can offer an easy decision approach for intricate decision issues with several standards
and no evident structure features. Questions to be evaluated in MECS optimization design
ought to be methodized and layered, and the structure model of hierarchy analysis ought to
be constructed. A three-level hierarchy structure of AHP was presented by Figure 8. Level
1 is the general objective of decision-making, which denotes the optimum design of MECS.
Level 2 denotes the criterion layer, where the weight, power dissipation, expense, and
dependability are utilized as evaluation standards of system multi-objective optimization
design. Level 3 denotes the scheme layer, where the solutions are determined in the Pareto
frontier acquired by NSGA-II. Besides, the process of AHP mainly includes the judgment
matrix structure, weight coefficient calculation, consistency of judgment matrix verification,
and weight coefficients of goal level calculation. The flow chart of AHP was shown in
Figure 9.

Figure 8. Three-level hierarchical framework of AHP.
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Figure 9. Flowchart of AHP.

1. Construct the decision-making model for AHP according to Figure 8.
2. Structure the judgement matrix J. Judgement matrix is established as per the associa-

tion between the goals in the criterion layer.

J =


1 3 9 1
1
3 1 1

3
1
3

1
9

1
3 1 1

9
1 3 9 1

 (31)

3. Validate the judgement matrix coherence. Coherence index is computed via:

{
CI = λmax−n

n−1
CR = CI

RI
(32)

where CI denotes the coherence index of the judgment matrix, RI denotes the average
stochastic coherence index of the matrix (specific values were presented by Table 2), CR
denotes the stochastic coherence ratio of the matrix, λmax denotes the maximal value of the
matrix characteristic value, and n denotes the matrix order.

Table 2. Values of the average stochastic coherence index.

n 1 2 3 4 5 6 7 8 9

RI 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45

By computation, if λmax = 3.7638 and CI = (3.7638 − 4)/(4 − 1) = −0.0787, then
CR = −0.0787/0.90 = −0.0875 < 0.1, which suggests that the weight matrix is coherent.
When the consistence test is not met, return to step 2 and reconstruct the judgement matrix.

4. Compute the weighted coefficient between the contrasted elements with the relevant
standards. Compute the continued product Mi of each row element in A, the product
of every row element, and its n-th root w1.

{
Mi = ∏n

i=1 xij =
[

27 0.0370 0.0041 27
]T , i = 1, · · · , n

w1 = n
√

Mi =
[

2.2795 0.4387 0.2533 2.2795
]T , i = 1, · · · , n

(33)



Aerospace 2022, 9, 85 16 of 22

Normalize w1 as Wi = w1/∑n
i=1 w1, where Wi denotes the weighted coefficient of

every factor.
W =

[
0.4341 0.0835 0.0482 0.4341

]
(34)

5. Speculate the design in the Pareto frontier as per the weighted coefficients of every
standard, and afterwards get the optimum design of MECS.

4. Case Study and Discussion

The diagram of an MECS with three fluid power supplies and two electric power
supplies (3H2E) was presented by Figure 10. The tendency toward more electricity causes
the transformation from hydraulic power into standby energy, or the replacement of
hydraulic power with electrical energy, which produces more options for all control surfaces.
For every actuator, it can be an HA linked to hydraulic source or an EHA linked to electrical
source. In addition, each actuator is controlled by at least one controller. Therefore, the
number of alternative configurations of the MECS is exceedingly high.

Figure 10. A typical 3H2E more electric control system (MECS).

In this section, we introduced the proposed optimization method into the case study
of the MECS illustrated in Figure 10. By setting the maximum optimization iterations
of NSGA-II as 200, and population size as 500, we obtained the Pareto frontier of the
optimization result illustrated in Figure 11. W refers to the weight of the MECS, P is the
power consumption of the MECS, and C represents the expense of the MECS. The red-
round-dot-curved surface is a 3D Pareto optimum front curved surface. Every dot denotes
an actuation design. The green line, marked by hollow pentagram; blue line, marked by
cross symbol; and yellow line, marked by triangle were projected on three planes. The
Pareto front was utilized to realize multi-objective optimization and to achieve a certain
decrease in configuration quantity.
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Figure 11. 3D-Pareto frontier of multi-objective optimization of MECS.

Moreover, the graph in Figure 11 presents the relationship among the three objectives.
The line in x, y plane presents that weight and power have the relation of promotion. The
line in x, z plane presents that weight and expense are contradictory. The line in y, z plane
displays contradictory power and expense of an MECS. When the power decreases, the
expense is elevated. The design objective is to minimize power and expense; hence, those
two functions conflict with one another. Due to the conflicts between design indexes, it is
hard to make each index optimum simultaneously.

In addition, to better illustrate the relationship between these three objectives and
system reliability, we projected Figure 11 onto three 2-D planes, respectively, and obtained
the 2D-pareto frontiers in Figures 12–14. Reliability was used as the scale parameter to
color different system configurations, i.e., the brighter the color, the higher the reliability.

Figure 12. 2D Pareto frontier between weight, power consumption, and reliability.



Aerospace 2022, 9, 85 18 of 22

Figure 13. 2D Pareto frontier among weight, cost, and reliability.

Figure 14. 2D Pareto frontier among power consumption, cost, and reliability.

Through multi-objective optimization, the Pareto optimization frontier was acquired.
Nevertheless, finding the best way to identify the optimal solution in the Pareto frontier
remains a daunting challenge. Thus, AHP was introduced to solve this problem. According
to Section 3.3, diverse optimum solutions can be realized via structuring diverse judgment
matrices when we use AHP to perform decision analyses. Thus, to better observe the
association between the goals more, the judgment matrix was presented by Table 3, and
the eventual result was illustrated in Figures 15 and 16.
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Table 3. The association between the objectives.

Objectives Weight Power Dissipation Cost Reliability

Weight 1 3 9 1
Power dissipation 1/3 1 1/3 1/3

Cost 1/9 1/3 1 1/9
Reliability 1 3 9 1

Figure 15. AHP assessment outcomes of Pareto frontier.

Figure 16. Reliability comparison among different configurations.
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Through a comprehensive analysis of AHP, the score of each solution on the Pareto
frontier was acquired. The solution with the greatest score is the best one. As presented by
Figures 15 and 16, the optimal design strategy is number 96 of the Pareto frontiers, with
triple redundancy configuration used in the MCES. The reliability of our designed configu-
ration increased by 5.89% and 55.34% respectively, compared with the dual redundancy
and single redundancy configurations. The results indicated that our approach combining
multi-objective optimization and decision-making could realize the multi-objective opti-
mization design of an MECS. The solutions on the Pareto frontier acquired by NSGA-II
arithmetic were uniformly distributed, which suggested that we could offer designers more
diversified choices. Subsequently, AHP was employed for the eventual decision analyses,
which enabled designers to introduce predilections and experiences for different goals.

5. Conclusions and Future Work

The present research demonstrated the multi-objective optimization for an MECS. By
designing the level length, the objectives are optimized. However, it is hard to minimize
every goal simultaneously due to the conflicts between these objectives. Thus, an appro-
priate multi-objective optimization algorithm, which can compromise multiple objectives,
is required to acquire the Pareto optimum solution set. Besides, since the Pareto frontier
solution is not a solution but a solution set, an approach of multi-objective decision-making
analysis is required to identify the optimum solution in the Pareto frontier. Herein, a com-
bination of multi-objective optimization and multi-objective decision-making was utilized.
The NSGA-II was employed to determine the optimum solution set, i.e., the Pareto frontier.
Subsequently, the optimum design was acquired via an AHP. The outcome revealed the
practicability of our optimization approach. In addition, the present research discovered
that the multi-objective optimization and multi-objective decision-making approaches
could be utilized in the optimization design of an MECS, and that this approach suited
other components and systems as well.

Future work should encompass the improvement of real-time performance for an
optimization algorithm, with more evaluation indicators considered.
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